
2023-04-09

Rethinking API andWeb

Abstract

We live in an era when RESTful is nothing new and CGI is considered obsolete.
APIs are always something overHTTP, and are often designed in the RESTful way.
But changes are happening and news ideas like GraphQL are emerging.

It is time to decouple APIs from HTTP.

Businesses Are Not RESTful

The real world business operations are not RESTful.

How can we abstract the operation of approving some applications into resource
operation?There isno “approve” verb inHTTP.WemayusePOST to create a “ticket
for approval”, but that is against the very idea of RESTful.

And what response code should we expect for a batch operation when some ap-
provals are successful and others are not? We cannot receive an array of 200 and
403.

Although sometimes useful and great, RESTful is a poor choice for abstraction
and generalization. In the real-world life, we work by sending messages in the
OOP way (SmallTalk); messages are often class method invocations (POST in
RESTful, INSERT in SQL) and instance method invocations (GET/PUT/DELETE
in RESTful, SELECT/UPDATE/DELETE in SQL).

Businesses Are Not Databases

GraphQL is the other extreme. It appears to be claiming “let frontend developers
CRUD for themselves and forget API endpoints”.

It is almost-always true that all backend system data will be stored by the
database, especially in an era where the “cloud-native” movement is popular
(along with all the YAML nonsense).

Some systems require plugins in order to implement logging, audition, alerting,
message bus, microservice hotplugging, etc. They may be seen as side effects in
the eyes of database IO. Thedatabase IOpatternhides such complexities from the
eyes of frontend developers, in a scary way. For example, in the account creation

Neruthes Articles Collection § Volume 2 11



scenario, sending the verification email is a side effect. The database IO pattern
creates an illusion for the frontend developer that simply creating a user entity
in the database is enough, where the side effect of sending a verification email
is hidden. It is possible that the email address verification daemon works as an
observer for the database IO, but I believe that calling “myapp.useradd(…)” is a
more graceful way.

Also, thedatabase IOpattern exposes someotherunnecessary complexities. It re-
quires a frontend developer to know toomuch about the database table structure.
While onemay argue that thiswaydoes not create extra data structure knowledge
beyond the universal data model documentation in a given project, I still believe
that complex operations should be left for the backend. Take the account creation
scenario for example. The frontend developers should not care too much about
how Person (uid, email address, username, etc) and Shadow (uid, hashed pass-
word, salt, etc) are organized in the database, nor should the frontend care too
much about how the token is generated for the verification email. Also notice
that the web frontend may not be the only consumer of APIs; other consumers
may exist (e.g. third parties).

It is possible that some HTTP daemon works as an router for GraphQL, who de-
cides how certain read requests may be served by something other than the un-
derlying MariaDB connection. However, again, database IO is a poor choice for
API abstraction.

Businesses Are Commands

Unlike real method invocations (Java), remote API calls do not have real refer-
ences (RAM pointers). Therefore, basic RPC pattern is not enough. Remote APIs
are basically RPCs, but not exactly RPCs. Instead, instances must be identified by
some ID. And this has something in common with the RESTful pattern.

Suppose that HTTPwas never invented and every user had to do their operations
over SSH. A user connects to the server and types “send-friend-request bob” to
send a friend request to Bob and types “show-news-feed” to get his latest news
feed.

CLI is a great abstraction for universal API wrapping. It can happen locally or re-
motely. It natively fits the request-response pattern. Its underlying remote com-
munication foundation can be SSH, WebSocket, and HTTP. Commands and re-
sponses are exchanged in an authenticated secure session which fits the HTTP
header authentication token (cookie, etc) infrastructure.

Insteadof “POST /api/friendReqest” (with formbody “target=bob”),wecanrequest
“POST /api/cmd” with a JSON body like the following code block, where the field
name “argm” means “argument map”.
{
"cmd": "send−friend−request",
"argm": { "target": "bob" }

Neruthes Articles Collection § Volume 2 12



}

Also, for batch operation…
POST /api/batch−cmd
Content−Type: JSON
Auth−Token: 1145141919810
[
{

"cmd": "send−friend−request",
"argm": { "target": "bob" }

},
{

"cmd": "send−friend−request",
"argm": { "target": "david" }

}
]

A more radical statement may be: businesses are shell scripts. And the backend
developer should provide relative commands so that these commands may be
invoked by the user via web frontend ormobile app or SSH or any other channel.

Neruthes Articles Collection § Volume 2 13


